Extended-range glucose biosensor via layer-by-layer assembly incorporating gold nanoparticles.

نویسندگان

  • Wei Zhao
  • Jing-Juan Xu
  • Hong-Yuan Chen
چکیده

We report on a glucose oxidase (GOx)/polyelectrolyte (PE)/gold nanoparticle (AuNP) multilayer films that can be utilized as efficient glucose biosensors by layer-by-layer self-assembly method. Electrochemical impedance spectroscopy (EIS) and UV-visible spectroscopy were adopted to monitor the regular growth of the multilayer films. The role of gold nanoparticles integrated in the multilayer films not only increase the amount and activity of GOx, but also significantly improve the electron-transfer characteristics of the films. The performance of the multilayer films for sensing glucose could be tailored by controlling the gold nanoparticles loading in the film and the number of layers. A biosensor constructed by four poly(dimethyldiallylammonium chloride) (PDDA)/AuNP/PDDA/GOx multilayer films exhibited a wide linear calibration range from 0 to 60.0 mM with the detection limit of 3.0 microM for the detection of glucose. The dynamic range can be extended up to 120 mM. The biosensor has good stability and reproducibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor

A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD w...

متن کامل

Modification of Glucose biosensor using Pt/MWCNTs electrode and optimization by application of taguchi method

In this paper, multi-wall carbon nanotubes (MWCNTs), gold nanoparticles (GNp) and glucose oxidase (GOD) was developed for the specific detection of glucose. MWCNTs were chemically modified with the H2SO4–HNO3 pretreatment to introduce carboxyl groups which were used to interact with the amino groups of poly(allylamine) (PAA) and cysteamine via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hy...

متن کامل

Modification of Glucose biosensor using Pt/MWCNTs electrode and optimization by application of taguchi method

In this paper, multi-wall carbon nanotubes (MWCNTs), gold nanoparticles (GNp) and glucose oxidase (GOD) was developed for the specific detection of glucose. MWCNTs were chemically modified with the H2SO4–HNO3 pretreatment to introduce carboxyl groups which were used to interact with the amino groups of poly(allylamine) (PAA) and cysteamine via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hy...

متن کامل

Fabrication of sensitive enzymatic biosensor based on multi-layered reduced graphene oxide added PtAu nanoparticles-modified hybrid electrode

A highly sensitive amperometric glucose sensor was developed by immobilization of glucose oxidase (GOx) onto multi-layer reduced graphene oxide (MRGO) sheets decorated with platinum and gold flower-like nanoparticles (PtAuNPs) modified Au substrate electrode. The fabricated MRGO/PtAuNPs modified hybrid electrode demonstrated high electrocatalytic activities toward oxidation of H2O2, to which it...

متن کامل

Longitudinal Magneto-Optical Kerr Effect in Ce:YIG Thin Films Incorporating Gold Nanoparticles

We report an experimental study on optical and magneto-optical properties of Cesubstituted yttrium iron garnet thin films incorporating gold nanoparticles. Au nanoparticles were formed by heating Au thin film on cubic quartz and garnet substrate in vacuum chamber and a Ce:YIG layer was deposited on them by the aid of Pulsed laser deposition method. A large enhancement of the longitudinal Kerr e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in bioscience : a journal and virtual library

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2005